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The paper is concerned with formulation of the gas dynamic conservation 
equations for the individual species in a non-equilibrium partially ionized gas 
mixture. As an example, the conservation equations for the electrons and the 
overall conservation equations are developed for a three component plasma, 
consisting of electrons, singly-ionized positive ions and neutral atoms. Non- 
elastic collisions are represented by the collisional-radiative decay mechanism of 
Bates, Kingston & McWhirter (1962a, b) .  Maxwellian velocity distributions are 
assumed, but the electrons are allowed to have a temperature different from the 
heavier particles and to drift relative to them. Particular attention is given to 
the electron energy balance equation which differs from that used by other 
investigators. 

1. Introduction 
One of the major problems in the design of magnetogasdynamic devices is to 

obtain a high eIectrica1 conductivity while, at the same time, keeping the gas 
temperature as low as possible. Many authors have suggested that non- 
equilibrium phenomena may be of use in solving this problem. One possible 
approach is to seek conditions under which the electron temperature can be 
maintained above the ambient gas temperature. Since the electrical conductivity 
increases with the electron temperature, this can produce a useful gain in 
conductivity for a given gas temperature. Various techniques for producing high 
electron temperatures have been discussed in the literature involving the use of 
applied or induced electro-magnetic fields (e.g. Kerrebrock 1961; Nue 196Z), or 
rapid expansion of the ionized gas (e.g. McNab & Lindley 1962). 

Non-equilibrium electron temperatures may also be of interest in purely 
gasdynamic problems involving ionized gases. Examples include the flow of an 
ionized gas through shock waves (e.g. Grewal & Talbot 1963), and expansion 
nozzles (e.g. Bray 1963). 

It is possible to consider a separate electron temperature in these situations 
because, as a consequence of the large ratio of atom or ion mass to electron mass, 
electrons transfer energy rapidly in collisions with other electrons but only slowly 
in collisions with atoms or ions. This phenomenon is most pronounced in plasmas 
which do not contain molecules with internal degrees of freedom. The electron 
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temperature must be determined from a macroscopic energy balance equation 
for the electron gas which should include all significant energy soukes and losses. 
Previous authors have employed many different approximations to the electron 
energy balance equation, some of these are mentioned briefly in fj 7 below. The 
main objective of the present work is to obtain an electron energy balance 
equation in conjunction with the other conservation equations, which are all 
consistent with certain stated assumptions. 

This energy equation can in principle be obtained by the rigorous methods of 
the kinetic theory of gases (e.g. Kaufman 1960). However, such methods become 
very complex when, as in the present case, it is necessary to include the effects 
of inelastic collisions and long-range Coulomb interactions in addition to the 
effects of fluid motion. Here we adopt a simpler approach starting from a general 
balance equation for a small macroscopic element. This equation contains terms 
representing the interaction between a typical particle and all the other particles 
in the gas mixture; these interaction terms are later evaluated for a simple model 

2. The conservation of mass, momentum and energy 
Consider a gas mixture made up of various species, s, and let the number 

density of particles of type s be ns(x, t ) ,  where x is a position vector and t denotes 
time. A general macroscopic balance equation for a property of species s may 

where (4,) is the value of a property for a particle averaged over a macro- 
scopically small volume element Ar, and ($svi,) is the mean value of 4, multiplied 
by the component of its velocity in the direction xi. The source term ArI($J 
represents the changes in (q&) which are caused by external agencies, such as 
gravity or an applied electro-magnetic field, plus the changes brought about by 
the interaction of all the particles present throughout the entire gas mixture on 
the s-type particles contained within Ar. This term includes the mutual inter- 
action among the s-type particles themselves. 

If we identify the property $s with the particle mass m,, then the source term 
in (1) is simply the mass rate of production of species s, per unit volume, denoted 
by ws. The mass conservation equation is then given by 

aPs a - + - (p,u{) = ws, 
at ax7 

where ps = msns, is the mass density and ui = (vi), is the mean flow velocity of 
the species. Similarly, identifying the property ($s) with (rn,vi,), the sth com- 
ponent of the momentum balance equation is 

where p " j  = p,(c:c{) is the partial pressure tensor, c& = w&-ut is the non- 
directed component of the velocity of a particular particle q of species s and, as 
before, the notation ( ) implies an average over the particles in the small element 
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Ar. The term I(m,v:) is the rate of change per unit volume of the ith component 
of momentum due to encounters between particles and externally applied forces. 
We shall break this term’down by writing 

where pisk is the time averaged force exerted by the entire species k, during 
elastic encounters, on the qth particle of species s contained within the small 
volume element. The q-summation extends over all the s-type particles within 
Ar and the summation over the species includes s itself. The quantity Gi, is the 
i th component of the externally applied force on a particle q, and C$ is the rate 
at which momentum is produced per unit volume as a result of non-elastic 
encounters. 

When the property $(Is is set equal to the total energy of the qth particle, i.e. 
. .  

$ qs = @qs + 9m,v;,vz,, 

where $qs is the internal energy of the particle, we obtain the species energy 
conservation equation 

is the total internal energy of the species per unit volume and (aq$axi) represents 
the thermal conduction within constituent s. The right-hand side in equation ( 5 )  
represents the work done by the interaction and applied forces plus the rate at 
which energy is supplied to the species s as a consequence of the non-elastic 
encounters; thus we write 

where Q, is the energy supplied per unit volume and time in non-elastic 
encounters. Combining (5) and (6) and eliminating the kinetic energy, +p ,u~u~,  
with the aid of (3) and (4), the energy balance equation may finally be written in 

where 

3. General equations for elastic encounters 
We shall now be more specific about the composition of our gas mixture by 

assuming that some species have a net particle charge eqs. The encounters between 
charged particles, in which both momentum and energy will be exchanged, can 
then occur when they are at relatively large distances apart as a consequence of 
their associated Coulomb fields. However, we know that a particular charged 
particle will be effectively shielded from the individual fields of other charged 
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particles, situated at a distance greater than the ‘Debye length’ from it, by the 
collective motion of the oppositely charged particles in its immediate vicinity. 
The cumulative effect of the fields of all the charged particles outside the Debye 
sphere on the particular charged particle may not be insignificant and to account 
for this effect we shall assume that i t  may be represented by an induced electric 
field .,@ and an induced magnetic field B; these induced fields are macroscopic 
quantities, averaged over finite intervals of space and time. Clearly,-@ may be 
related to the space-wise distribution of the charge density in the gas mixture 
(plasma) as a whole and @ to the mean motion of all the charged particles within 
the plasma. Therefore, we express the average force on a particular charged 
particle due to encounters with all the remaining charged particles situated 
outside the Debye sphere in the form 

(d>h)  

where h is the Debye length. The fields ,!@ and Bi may be reinforced by an 
externally applied electromagnetic field (Bi, E1) which, in the absence of any 
other external agency, would be responsible for the applied force Q;,. The sum 
of these forces on all the s-type charged particles within our original elemental 
volume, Ar, is then 

where eQs = e,, and the fields Ei = + Ei, and Bi = Bi + Ei, are assumed to be 
continuous functions of position and time. 

The rate at which energy is transferred to the charged species by long-range 
encounters is obtained by multiplying equation (10) by v& and then summing 
over the volume element; the result is simply 

where we have also taken into account the work done by the externally applied 
field. 

Although it is clearly unrealistic to treat encounters between charged particles 
as independent binary collisions we shall, nevertheless, adopt this approach with 
the knowledge that the form of the resulting expressions for such gross plasma 
properties as electrical conductivity, are substantiated by experimental measure- 
ments (e.g. Lin, Restler & Kantrowitz 1955). These binary collision processes 
are more easily considered by introducing the normalized single species velocity 
distribution function of classical kinetic theory. This is defined such that the 
probable proportion of the total number of particles which, a t  time t ,  are situated 
in the volume element Ar and have velocities lying in the range Av8 centred 
about x and v, respectively, is equal to 

f s (x ,  v,, t )  Av,A7. 
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In  terms of the velocity distribution function, the average values of the molecular 
properties referred to in $ 2  are 

( $ 5 )  = l$sfsdvs; ($svs) = ~$sv,fs% 
where the integration extends over the entire velocity space. 

By considering single binary encounters between particles of different species 
the standard methods of kinetic theory yield the following results for the rate 
at which all the s-type particles contained within AT lose momentum (kinetic 
energy) as a consequence of encounters with particles of species k :  

The vector quantity g is the relative velocity before the encounter, G is 
the velocity of the centre of mass of the two colliding particles, gsk (g )  is the 
scattering cross-section and h is the upper limit of the impact parameter for the 
two colliding particles. Clearly the expressions (13) and (14) can only be evalu- 
ated when the form of the velocity distribution functions and the appropriate 
scattering cross-sections are known. 

4. The elastic interaction terms for a Maxwellian velocity distribution 
Before we proceed to simplify and evaluate the elastic interaction terms, it 

will be convenient to be more specific about the composition of our plasma. We 
shall assume that it is composed of electrons (suffix e ) ,  singly ionized positive 
ions (suffix i) and neutral atoms (suffix a) ,  all of which have spherically sym- 
metric force fields. 

If we consider the flow of our gas mixture allowing for only small gradients of 
the macroscopic properties i t  will correspond, in the absence of applied fields 
and interaction terms (i.e. = 0) ,  to the limiting case of isentropic flow in 
which the velocity distribution functions are of Maxwellian form. Kantrowitz & 
Petschek (1957) have argued for the case of a simple plasma that, provided the 
ion Larmor radius is larger than the effective mean free path, the velocity distri- 
bution functions for both the electrons and the ions can still be closely approxi- 
mated by a Maxwellian form over a wide range of conditions. However, 
equipartition between the translational energy of the heavy particles (ions and 
neutrals) and the electrons may not be complete since, as we see from the results 
of $ 3, the energy exchanged in electron/ion encounters is directly proportional 
to the mass ratio m,:m,, and will therefore require many collisions for equi- 
partition, In  view of these comments we shall assume that the species velocity 
distribution functions have a Maxwellian form in a frame of reference moving 
with the mean flow velocity of the species, thus 

where k is Boltzmann’s constant and T, = ms(cz)/3k is the species temperature. 
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Recently, Morse (1 963) has used the above assumption to evaluate the inter- 
action terms for the general case of elastic binary encounters between specific 
types of particle, account being taken of the different species mean flow velocities, 
by taking the appropriate moments of the spatially homogeneous Boltzmann 
equation. The evaluation of the integrals is straightforward but tedious. How- 
ever, since we are primarily interested in a simple plasma in which the ions and 
the neutrals have almost identical masses, much greater than the eledron mass, 
a number of assumptions may be made which still allow us to consider a wide 
range of plasmas whilst simplifying the reduction of integrals ( 1 3 )  and (14 ) .  

We assume that: 
(a) the mean thermal energy of the ions and neutrals is less than or of the 

same order of magnitude as that of the electrons, so we count 

ct = O[ce(me/mz)'I ; 

( b )  the ions and the neutrals are at the same temperature and have the same 

(c )  the electron diffusion velocity w l  = ut - ui satisfies the condition 
mean flow velocity, u: = uk = ui; 

we/(ce">' = O[(me/mi)'I* 

The actual reduction of the integrals is straightforward but tedious. The resulting 
expressions take the form: 

F .  = F  . = O ,  (15) qza qaz 

where vek is the effective collision frequency of the electi-ons with species k ;  it 
may be evaluated using the expression 

Since 2 2 Fqek. cqe is zero, the quantity Le defined in ( 8 )  is 
k q  

(d>h) 

For the important case of Coulomb collisions between electrons and ions 

where e is the magnitude of the electronic charge measured in esu and h is the 
upper limit of the impact parameter which is usually taken to be the Debye 
shielding length, A = [kT,/47rnee2]*. The electron/ion collision frequency is given 
by the expression 

1 v = - - nie4- 
ei 3 (,)' me (2kTe)4 In [$I9 
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a result which is in close agreement with that obtained by Petschek & Byron 
(1957), see also Goldsworthy (1961), where no account was taken of the finite 
value of the electron diffusion velocity. As we shall see later, the electrical 
conductivity for a fully ionized plasma in the absence of a magnetic field is then 
given by rzl = nee2/meuei, which differs from the Spitzer (1956) conductivity 
by only a small numerical factor (9 3.4). 

Because of the relatively complicated way in which the electrons are scattered 
by the atomic field of some neutral atoms, the Ramsauer-Townsend effect, see 
Massey & Burhop (1952), i t  may be useful to assume an effective scattering 
cross-section which is taken to be constant over the likely range of electron 
temperature. In  this case the electron/neutral collision frequency is given by 

which, when applied to the case of a slightly ionized gas, gives a value for the 
electrical conductivity only 12% less than that given by Chapman & Cowling 
(1960). 

There is no conceptual difficulty in taking into account finite values of all the 
relative diffusion velocities, as has been demonstrated by Morse. However, for 
encounters between particles of similar mass, the relative diffusion velocity 
must be much less than the mean thermal velocities if Maxwellian velocity 
distributions are to be employed. 

5. Non-elastic encounters 
We shall continue to consider a simple plasma model and represent the non- 

elastic encounters by the collisional-ra~iative decay mechanism proposed by 
Bates et al. (1962a, b )  for a partially ionized hydrogenic plasma. The reactions 
considered are: three-body recombination and ionization 

superelastic and inelastic collisions 

transition by line radiation and absorption 

radiative recombination and photo ionization 

B(P)  H+ + e---. H ( p )  + hv, 
where p ,  q, . . . , are the principal quantum numbers of discrete energy levels and 
e- refers to an electron in the free state. We may regard K(e-,p), K ( p ,  q) etc. as 
phenomenological rate coefficients for the various reactions which are identical 
to  those defined by Bates et al. (19624.  The rates at which the number densities 
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where we have assumed the plasma to be optically thin, i.e. all emitted radiation 
escapes. Bates et al. argue that, for an optically thin plasma, if the mean thermal 
energy of the electrons is much less than the &st excitation energy and 

n, + 1014+urcm-3, 

where 210 = z x quasi-equilibrium number densities of the excited systems 
are very rapidly established which change very little by comparison with the 
number densities of the free electrons, n,, and ground state atoms, na( 1). Thus, 
the total mass rate of production of the neutrals atoms, w, in equation ( 2 ) ,  is 

(22) 
simply written wulma = - wJmd = - w,/m, = nu( I), 
since n.=n. '%  ', = -  h&), and mu = m,+m,. 

From the set of linear equations (21), excluding the equation for ria( l) ,  values 
of nu(p) may be calculated in terms of n,(l), n, and the rate coefficients by 
assuming hu(p) = 0, for p > 1. An infinite matrix may be avoided by taking 
advantage of the fact that when p is large enough the collisional processes are 
much more important than the radiative processes so na(p) is given by the 

where I p  is the ionization energy from level p and h is Plank's constant. Thus, 
h,(l) may be evaluated from equation (21), after substitution, by specifying the 
electron number density and the rate coefficients; these latter quantities being 
functions of the electron temperature. Bates et al. have carried out calculations 
to determine hu(l)  for a wide range of electron density and temperature and 
have expressed their results by tabulating the quantities a! and S where 

hu( 1) = - hi = anin, - Sn,( 1) n,. 

The quantity a was given the name collisional-radiative recombination coeficient 
and S the name collisional-radiative ionization coeflicient. 

Recent investigations by Kinnov & Hirschberg (1962), Byron, Stabler %J 
Bortz (1962) and Makin & Keck (1963) have resulted in relatively simple expres- 
sions for the rate coefficients which appear to be valid over certain ranges of 
conditions. For instance, in the important range where radiative recombination 
and radiative transitions may be neglected (i.e. high electron density and low 
temperature), Makin & Keck have developed a classical variational theory of 
three-body electron-ion recombination giving a in the form 

a! = 2.3 x 10-~T~~necm3sec-~ ,  
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which is in close agreement with the numerical results of Bates et al. The ioniza- 
tion coefficient follows directly from the equilibrium relationship 

In  a sufficiently tenuous plasma, radiative recombination is the dominant 
process and a is given by the approximate expression 

a + 4.1 x 10-1*T;fcm3sec-l. 
Bates’s numerical results at very low electron densities are correlated reasonably 
well by the above expression. 

Due to the smallness of the electron mass we shall neglect the inertial terms, 
a(peud)/at and 8(p,u~u~)/axi, in the electron momentum equation. For the same 
reason we shall also neglect the electron momentum source term, C ~ A T ,  in 
equation (4) and the term Me in equation (7). It is then logical to assume that 
the ion and neutral momentum source terms are given by 

Cf = -Q; = - ha( 1) ma ui (mi = ma), 

since this at least satisfies the necessary condition 2 C: = 0, and no theory is 

available which takes into account a mean relative velocity between species 
when considering non-elastic encounters. 

We shall now proceed to deduce the electron energy source term, Q,, by 
continuing to consider the collisional-radiative decay mechanism as applied to 
an optically thin plasma. The net energy gained by the electrons per event of the 
three-body recombination process is Ip; the net loss of energy by the electrons 
per event of the collisional ionization process is also ID.  The energy gained (lost) 
by the electrons in one event of the superelastic (inelastic) collisions is clearly 
(Ip - I,). Finally, of the total energy radiated away from the plasma during 
radiative recombination, the electrons lose the average amount of energy 
(3kT,/2), per event. Thus we write 

Qe = S. K(e-2 

8 

m W m m  

ncneIp - 2 K(P,  e-1 Ip + Z 2 K(p,  a) n,(p) ne(lp - 1,) 

- 2 z ~ ( p ,  4 )  na(p) ne(I,-Ip) - 2 ~ ( p )  n t n e ( 3 ~ 2 ) -  (23) 

p = l  p = 1  p=l Q = 1  
m m  

p = l  Q=p p = l  

By multiplying equation (21) by Ip and then summing over all p an expression 
is obtained which enables us to replace all the collisional terms in equation (23) 
(terms containing the coefficients K(e-,p),  K(p,  e-) and K(p,  q)) by radiation 
terms and terms involving ha@), viz. 

m P  m 

where Qrad. = - C 2 a )  ( I p  -1,) - X P(P) n3Ip + 3kT,/2)* (25) 

&e = %( 4 + &rad: ( 2 6 )  

p = l  q=l p-1 

However, in an optically thin plasma, ha@) = 0 for p > 1, therefore 

The above equation simply states that the rate at which electrons gain energy 
by the coZZisiona1-radiative decay mechanism is equal to the rate at which energy 
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is liberated in forming ground state atoms from free electrons and ions, less the 
rate a t  which energy is radiated away from the plasma as a whole. 

If  the plasma is optically thick for particular radiation then the appropriate 
terms are omitted from the expression for Qraa.. For instance, if Lyman line 
radiation is absorbed, then all terms containing the transition probabilities 
A ( p ,  1) are omitted from equation (25). In  this particular example the level 2 
would be effectively stabilized with respect to the radiative transitions and iB 
may be necessary to retain the term, ia(2)Iz,  in equation (24). This and other 
examples of optically thick plasmas are discussed by Bates et al. (19623). 

The only other energy loss mechanism which may need to be accounted for in 
our non-relativistic electron energy balance is bremsstrahlung radiation. How- 
ever, it  is unlikely that this will be important other than at the very high 
temperatures where our hydrogenic model may be fully ionized and hence Q, 
would be zero. 

The average amount of energy lost by the ion gas per recombination event is 

$m,u2), 

which, in turn, is equal to the energy gained by the neutral gas atoms. The ions 
gain this amount of energy at the expense of the neutral gas per ionization event. 
We are, of course, assuming that during the average recombination/ionization 
event there is no significant change in the translational energy of the heavy 
particle, therefore Qi = i,(+k% + #miu2) 

and 
p=1 

where Ti = T,, and mi = mu, by our earlier assumptions. In  the case of the 
optically thin plasma Q, = i,( 1) (+I& + #m,uZ). 

In  applying the theory of Bates et al. to non-elastic processes occurring in 
a non-uniform plasma, we have implicitly assumed that deviations from 
Maxwellian velocity distributions and the macroscopic drift velocities of charged 
particles have only a small effect on the non-elastic processes. 

6. Final form of the conservation equations assuming Maxwellian 
velocity distributions 

Because of the assumed Maxwellian velocity distributions, the partial pressure 
tensors, P:’j, become scalar quantities, ps, and the thermal conduction terms, 
aq$?xi, are zero. Also, since the electron mass is small, the conservation 
equations ( 2 ) ,  (3) and (7) may be written for the electrons in the form: 

an, a w -+- (n,ui) = 2, 
me at axi 

ape 
- = -n ,e [Ei+(u ,~B) i ]+R; ,  
axi 



Conservation equations for a plasma 669 

where, from equations (22), (15), (18) and (24), respectively, the interaction 
terms may be written as 

Zi,,/me = - n a t A j ,  Ri = neme(vea+ve,) (ui-uk), 

L, = 2n,(me/mu) (vea + vei) [@(T - T,) + &(ui -u:)~],  

Qe = ha( ' )  4 + Qrad., 

the last being for an optically thin plasma. The collision frequencies vei and vea 
may be evaluated from equations (19) and (20), respectively. 

Overall conservation equations for the plasma are obtained by summing ( 2 ) ,  
(3) and (7) for all constituents and noting that ui = ui = u:; the following results 
are obtained: 

aP a -+- (pui) = 0, 
at ax3 

(31) 
Dui 8p 
Dt 

DH Dp 
Dt Dt 

p--=-- axi+ (ni -ne) e[Ei + (u A By] +nee[(u -ue) A BIi, 

p - - - = -nee[@ - u,) A BIiui + neeEi(ui - u:) 

a 
+-[(ee+Pe) a X j  (ui-ud)l+Qe, (32) 

where the overall plasma properties are defined as 

p =  2 Ps, P = Z P S ,  E =  Z e s  
S a S 

and the quantity H is a 'frozen' specific enthalpy for the plasma, H = (e+p)/p;  
it contains no contribution from the ionization energy. 

The above equations may be written in terms of the conduction current density 

ji = n,e(u{-u;), 

and the total electrical resistivity 

7/ = 7 / e i + T e a *  

Using these relations, equation (28) reduces to a simple form of the generalized 
Ohm's law: 

qji = E i + ( u ~ B ) i - -  [ ( j ~ B ) i - % ]  axi (33) 
nee 

and the overall energy equation becomes 

(34) 
a 
3x2 

=ji[Ei+ ( ~ ~ B ) i ] + - . [ ( e ~ + p ~ )  (ui-ut)]+Qe. 
DH Dp 

P--- Dt Dt 

In the latter equation, the first term on the right-hand side is the work performed 
by the electromagnetic field in a frame of reference moving with the plasma, and 
the second term represents transport of enthalpy due to the drift of the electrons 
relative to the mean motion of the plasma. The final term represents heat sources 
due to recombination and radiation phenomena. In many cases of practical 
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importance i t  is the steady, time independent electron energy equation which is 
of interest, this takes the form 

where the electron enthalpy per unit volume, ( ee+pe) ,  has been written as 
in, kT,. 

7. Concluding remarks 
The key assumptions in the analysis leading to the equations of the previous 

section are: 
(1) the plasma is made up of three simple components-electrons, neutral 

atoms and singly ionized positive ions; 
( 2 )  the non-elastic processes are limited to the collisional-radiative decay 

mechanism, Bates et aZ. (1962a,  b ) ,  with the elastic processes described by the 
classical theory for binary encounters; 

(3) the only diffusion allowed is that of the electrons relative to the ions and 
neutrals with the restriction that the magnitude of the diffusion velocity is of 
the same order or less than (m,/m,)* (&*; 

(4) the distribution of each species throughout the particle velocity space is 
described by Maxwellian distribution functions and this eliminates all transport 
phenomena except those ‘driven ’ by the electromagnetic field. 

In  spite of the crudity of this model for the flow of a non-equilibrium plasma, 
many real effects are predicted. No assumption has been made about charge 
neutrality and indeed equation (33) shows that, in the absence of the conduction 
current, an induced electric field is built up by charge separation. The magnitude 
of this field is predicted to be 

= - (nee)-l apelaxi. 

There are many cases where the induced electric field is not negligible although 
numerically n, = ni, for example, the sheath effect around a probe in a plasma, 
Petschek & Byron (1957).  It is a vestige of all the coupled thermo-electric 
effects which occur when diffusion is correctly represented. 

A more sophisticated analysis would be required to eliminate the assumption 
of Maxwellian velocity distributions. However, examination of the general 
energy balance equation ( 7 )  applied to electrons does suggest that it will retain 
the same form as equation (29 ) ,  in the presence of small deviations from 
Maxwellian equilibrium, with the addition of transport and dissipative terms. 
In  many cases the most important of these neglected terms is likely to be the one 
representing thermal conduction within the electron gas. 

Finally, the electron energy balance equation may be compared with 
previously published equations. Russell, Byron & Bortz (1963) quote without 
derivation an equation very similar to equation (35)  but omitting the term 
ud ape/8xi. Many other authors, including Kerrebrock (1961), Brocher (1962) 
and McNab & Lindley (1962),  have assumed simple, intuitively based energy 
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balance equations in which the change of electron internal energy is balanced 
against heat sources such as Joule heating and electric collisions with other 
constituents. These authors also neglect the pressure gradient term. On the other 
hand, Kaufman (1960), in a detailed kinetic theory derivation, includes rigorously 
the effects of pressure gradients and transport phenomena but does not consider 
non-elastic collisions. 

Grewal & Talbot (1963), quoting Kaufman, use an equation similar to our 
equation (29) in their studies of shock-wave structure. They include the addi- 
tional terms representing thermal conduction and viscous dissipation but omit 
the inelastic collision terms and the terms containing the electrical conductivity. 
Their results suggest that thermal conduction in the electron gas is significant in 
their case. In  such circumstances, we can add the thermal conduction and other 
dissipative terms to equation (29) in an ad hoc manner but then, of course, the 
equation is no longer strictly compatible with the initial assumptions. 

Another situation where thermal conduction is likely to have a large effect in 
the rapid expansion of an ionized gas through a supersonic nozzle at low pressure. 
The experimental results of Clayden & Coleman (1963) show that high electron 
temperatures occur at the exit to such a nozzle. On the other hand, equation (35) 
would predict that, under experimental conditions where the recombination 
term (EkT, + 11) &( 1) is small because of the low pressure and the Ohmic heating 
termj2r is small because of the absence of applied fields, T, would fall in roughly 
the same way as T. Order of magnitude calculations using the thermal con- 
ductivity expression of Spitzer (1956) suggest that the neglected thermal 
conduction term could be large enough to explain the discrepancy in this case. 

This work was supported in part by the European Office of Aerospace Research, 
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